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Abstract This paper investigates a time-inconsistent stochastic linear-quadratic problem with regime

switching that is characterized via a finite-state Markov chain. Open-loop equilibrium control is studied

in this paper whose existence is characterized via Markov-chain-modulated forward-backward stochastic

difference equations and generalized Riccati-like equations with jumps.

Keywords Forward-backward stochastic difference equation, open-loop equilibrium control, regime

switching, stochastic linear-quadratic problem, time inconsistency.

1 Introduction

Time inconsistency of this paper is referred to a phenomenon of optimal control: A control
which is optimal at some previous time instant is no longer optimal when viewed back in
the future. This phenomenon is often observed in dynamic decision makings, and is firstly
investigated by Strotz[1] in the 1950s. Strotz’s key idea is to view the controller at different
instants as different agents, and is to reformulate the time-inconsistent problem as a game
between these agents. The equilibrium of this game is a time-consistent solution to the original
time-inconsistent optimal control problem.

Since Strotz’s work, the game approach is widely accepted, and many practical time-
inconsistent scenarios in economics and finance are widely studied; see, for example, [2–5] and
references therein. In recent years, there is a growing body of literature from control community
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that investigates the time-inconsistent optimal control problems. [6, 7] gave the definition of
equilibrium control in continuous time for problems with non-exponential discounting, and [8]
discussed the problems of general Markovian time-inconsistent stochastic optimal control. To
classify, two kinds of time-consistent equilibrium solutions have been reported within the realm
of time-inconsistent optimal control, which are the open-loop equilibrium control and closed-
loop equilibrium strategy[9–13]. In [11–15], the researchers investigated Strotz’s equilibrium
solution[1], and established some theoretical results for time-inconsistent optimal control in
terms of closed-loop equilibrium strategy; while [9, 10, 13, 16, 17] studied the open-loop equi-
librium control for linear-quadratic (LQ, for short) problems. Recently, [18] proposes a novel
notion of equilibrium solution for the time-inconsistent stochastic LQ problem. This notion is
called the mixed equilibrium solution, which consists of two parts: a pure-feedback-strategy
part and an open-loop-control part. When the pure-feedback-strategy part is zero or the open-
loop-control part does not depend on the initial state, the mixed equilibrium solution reduces
to the open-loop equilibrium control and feedback equilibrium strategy, respectively. Further-
more, an example is given[18] to show that the mixed equilibrium solution exists for all the
initial pairs, although neither the open-loop equilibrium control nor the feedback equilibrium
strategy exists for some initial pairs.

LQ problems with regime switching have been extensively studied during the last few
decades[19–26]. The regime switching is characterized via a Markov process, which often arises in
reality with component failures or repairs, changing subsystem interconnections, and abrupting
environmental disturbances; see also [24, 26–30]. Due to their wide existence of time incon-
sistency and regime switching, it is very necessary to study the LQ problems with both time
inconsistency and regime switching. To this aim, in this paper we investigate the open-loop equi-
librium control of a time-inconsistent stochastic LQ problem with regime switching, which yet
has not been studied before. Necessary and sufficient conditions are derived on the existence
of open-loop equilibrium control via a Markov-chain-modulated forward-backward stochastic
difference equation (FBSΔE, for short). By decoupling this FBSΔE, conditions in terms of
Riccati-like equations with jumps are obtained to characterize the open-loop equilibrium con-
trol. In [31], an LQ optimal control is considered for discrete-time Markov jump linear systems
and a Markov-chain-modulated forward-backward difference equation (FBΔE, for short) is re-
ported. As [31] deals with a system model without the noise w (of this paper), the FBΔE
of [31] differs significantly from the FBSΔE. Therefore, the study of FBSΔE is much involved
than that of FBΔE of [31].

The remaining part of this paper is organized as follows. In Section 2, the definition of
open-loop equilibrium control is introduced, and its characterization is presented in Section 3.
Section 4 gives an illustrative example and Section 5 concludes the paper.

2 Open-Loop Equilibrium Control

Let (Ω ,F , P ) be a complete probability space, which is assumed to be abundant enough
such that two processes θ � {θk} and w � {wk} live on it.
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(a) θ is a homogeneous Markov chain taking values in a finite set {1, 2, · · · , τ} � M with a
stationary one-step transition probability matrix Λ = (pij) ∈ R

τ×τ . The (i, j)-th entry of Λ is

pij = P (θk+1 = j|θk = i), i, j ∈ M, k = 0, 1, · · · .

The initial distribution of θ0 is denoted by ν = (ν1, ν2, · · · , ντ )T where the superscript T denotes
the transposition of a matrix or a vector.

(b) w is a martingale difference sequence in the sense of E[wk+1|Fk+1] = 0 for any k, where
Fk+1 is the σ-algebra generated by {w�, θ�, � = 0, 1, · · · , k} and F0 is understood as {∅,Ω}. It
is also assumed that for any k the process w has the property

E[w2
k+1|Fk+1] = 1,

and that θ, w are independent of each other.
Consider the following controlled discrete-time stochastic difference equation (SΔE, for

short) ⎧⎨
⎩ Xt

k+1 =
(
At,k,θk

Xt
k + Bt,k,θk

uk

)
+

(
Ct,k,θk

Xt
k + Dt,k,θk

uk

)
wk,

Xt
t = x, k ∈ Tt = {t, t + 1, · · · , N − 1}, t ∈ T = {0, 1, · · · , N − 1},

(1)

where {Xt
k, k ∈ T̃t} � Xt and {uk, k ∈ Tt} � u with T̃t = {t, t+1, · · · , N} are the state process

and control process, respectively; when θk = i, the corresponding coefficients At,k,i, Ct,k,i ∈
R

n×n, Bt,k,i, Dt,k,i ∈ R
n×m are deterministic matrices. In (1), x belongs to l2F (t; Rn) with

l2F(t; Rn) =
{
ζ ∈ R

n
∣∣ζ is Ft-measurable, E|ζ|2 < ∞}

. (2)

The cost functional associated with System (1) is

J(t, x; u) =
N−1∑
k=t

E
[
(Xt

k)TQt,k,θk
Xt

k + uT
k Rt,k,θk

uk

]
+ E

[
(Xt

N )TGt,θN Xt
N

]
, (3)

where for θk = i, Qt,k,i, Rt,k,i, k ∈ Tt and Gt,i are deterministic symmetric matrices of appro-
priate dimensions. Let

l2F(Tt; Rm) =
{
μ = {μk, k ∈ Tt}

∣∣μk is Fk-measurable, E|μk|2 < ∞, k ∈ Tt

}
. (4)

Then, we pose the following optimal control problem.
Problem (LQ) For (1), (3) and the initial pair (t, x), find a u∗ ∈ l2F (Tt; Rm), such that

J(t, x; u∗) = inf
u∈l2F (Tt;Rm)

J(t, x; u).

Note that Problem (LQ) is time-inconsistent. The following definition gives a time-consistent
solution.
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Definition 2.1 ut,x,∗ ∈ l2F (Tt; Rm) is called an open-loop equilibrium control of Problem
(LQ) for the initial pair (t, x), if

J
(
k, Xt,x,∗

k ; ut,x,∗|Tk

) ≤ J
(
k, Xt,x,∗

k ; (uk, ut,x,∗|Tk+1)
)

holds for any k ∈ Tt and any uk ∈ l2F(k; Rm). Here, ut,x,∗|Tk
and ut,x,∗|Tk+1 are the restrictions

of ut,x,∗ on Tk = {k, k + 1, · · · , N − 1} and Tk+1 = {k + 1, k + 2, · · · , N − 1}, respectively; and
Xt,x,∗

k is computed via⎧⎨
⎩

Xt,x,∗
k+1 =

[
Ak,k,θk

Xt,x,∗
k + Bk,k,θk

ut,x,∗
k

]
+

[
Ck,k,θk

Xt,x,∗
k + Dk,k,θk

ut,x,∗
k

]
wk,

Xt,x,∗
t = x, k ∈ Tt.

3 Solution

Lemma 3.1 Let ζ ∈ l2F(k; Rn), u = {u�, k ∈ Tk} ∈ l2F (Tk; Rm), uk ∈ l2F(k; Rm) and
λ ∈ R. Then, the following equation holds

J(k, ζ; (uk + λuk, u|Tk+1)) − J(k, ζ; u)

= 2λE

{
Ek

[
Rk,k,θk

uk + BT
k,k,θk

Zk,uk

k+1 + DT
k,k,θk

Zk,uk

k+1 wk

]T
uk

}
+ λ2Ĵ(k, 0; uk)

with

Ĵ(k, 0; uk) =
N−1∑
�=k

E
[
(Y k,uk

� )TQk,�,θ�
Y k,uk

�

]
+ E

[
uT

k Rk,�,θk
uk

]
+ E

[
(Y k,uk

N )TGk,θN Y k,uk

N

]
. (5)

Here, u|Tk+1 = {uk+1, uk+2, · · · , uN−1} and the l2 spaces are similarly defined as those in (2)–
(4); Zk,uk , Y k,uk are given, respectively, by the backward stochastic difference equation (BSΔE,
for short) ⎧⎨

⎩
Zk,uk

� = E�

[
Qk,�,θ�

Xk,uk

� + AT
k,�,θ�

Zk,uk

�+1 + CT
k,�,θ�

Zk,uk

�+1 w�

]
,

Zk,uk

N = EN (Gk,θN Xk,uk

N ), � ∈ Tt,

and the SΔE ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y k,uk

�+1 = Ak,�,θ�
Y k,uk

� + Ck,�,θ�
Y k,uk

� w�,

Y k,uk

k+1 = Bk,�,θk
uk + Dk,�,θk

ukwk,

Y k,uk

k = 0, � ∈ Tk+1,

where Xk
N is computed via⎧⎨

⎩
Xk

�+1 =
(
Ak,�,θ�

Xk
� + Bk,�,θ�

u�

)
+

(
Ck,�,θ�

Xk
� + Dk,�,θ�

u�

)
w�,

Xk
k = ζ, � ∈ Tk.

(6)
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Proof Replace uk with uk + λuk in (6), and denote the solution by Xk,λ. Then,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xk,λ
�+1 − Xk

�+1

λ
= Ak,�,θ�

Xk,λ
� − Xk

�

λ
+ Ck,�,θ�

Xk,λ
� − Xk

�

λ
w�,

Xk,λ
k+1 − Xk

k+1

λ
= Bk,k,θk

uk + Dk,k,θk
ukwk,

Xk,λ
k − Xk

k

λ
= 0, � ∈ Tk+1.

Denoting Xk,λ
� −Xk

�

λ by Y k
� , � ∈ Tk, we get⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Y k

�+1 = Ak,�,θ�
Y k

� + Ck,�,θ�
Y k

� w�,

Y k
k+1 = Bk,k,θk

uk + Dk,k,θk
ukwk,

Y k
k = 0, � ∈ Tk+1.

As Xk,λ
� = Xk

� + λY k
� , � ∈ Tk, it holds that

J(k, ζ; (uk + λuk, u|Tk+1)) − J(k, ζ; u)

=
N−1∑
�=k

E
[
(Xk

� + λY k
� )TQk,�,θ�

(Xk
� + λY k

� ) − (Xk
� )TQk,�,θ�

Xk
�

]
+E

[
(uk + λuk)TRk,k,θk

(uk + λuk) − uT
k Rk,k,θk

uk

]
+E

[
(Xk

N + λY k
N )TGk,θN (Xk

N + λY k
N )

] − E
[
(Xk

N )TGk,θN Xk
N

]
= 2λ

{ N−1∑
�=k

E
[
(Xk

� )TQk,�,θ�
Y k

�

]
+ E

[
uT

k Rk,k,θk
uk

]
+ E

[
(Xk

N )TGk,θN Y k
N

]}

+λ2

{ N−1∑
�=k

E
[
(Y k

� )TQk,�,θ�
Y k

�

]
+ E

[
uT

k Rk,k,θk
uk

]
+ E

[
(Y k

N )TGk,θN Y k
N

]}
. (7)

Note that

N−1∑
�=k

E
[
(Xk

� )TQk,�,θ�
Y k

�

]
+ E

[
uT

k Rk,k,θk
uk

]
+ E

[
(Xk

N )TGk,θN Y k
N

]

=
N−1∑
�=k

E
[
(Xk

� )TQk,�,θ�
Y k

� + (Zk
�+1)

TY k
�+1 − (Zk

� )TY k
�

]
+ E

[
uT

k Rk,k,θk
uk

]

=
N−1∑
�=k

E

{[
Qk,�,θ�

Xk
� + AT

k,�,θ�
Zk

�+1 + CT
k,�,θ�

Zk
�+1w� − Zk

�

]T
Y k

�

}

+E

[(
Rk,k,θk

uk + BT
k,k,θk

Zk,uk

k+1 + DT
k,k,θk

Zk
k+1wk

)T
uk

]

= E

{
Ek

[
Rk,k,θk

uk + BT
k,k,θk

Zk,uk

k+1 + DT
k,k,θk

Zk,uk

k+1 wk

]T
uk

}
.

This together with (7) implies the result.
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Concerned with the existence of open-loop equilibrium control, we have the following result
whose proof is omitted here due to Lemma 3.1.

Theorem 3.2 For the initial pair (t, x), the following statements are equivalent.
(i) There exists an open-loop equilibrium control of Problem (LQ) for the initial pair (t, x).
(ii) The following assertions hold.
a) There exists a ut,x,∗ ∈ l2F(Tt; Rm) such that the stationary condition

Ek

[
Rk,k,θk

ut,x,∗
k + BT

k,k,θk
Zk,∗

k+1 + DT
k,k,θk

Zk,∗
k+1wk

]
= 0, k ∈ Tt (8)

is satisfied, where Zk,∗
k+1 is computed via the following FBSΔE⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xk,∗
�+1 = Ak,�,θ�

Xk,∗
� + Bk,�,θ�

ut,x,∗
� +

(
Ck,�,θ�

Xk,∗
� + Dk,�,θ�

ut,x,∗
�

)
w�,

Zk,∗
� = E�

[
Qk,�,θ�

Xk,∗
� + AT

k,�,θ�
Zk,∗

�+1 + CT
k,�,θ�

Zk,∗
�+1w�

]
,

Xk,∗
k = Xt,x,∗

k , Zk,∗
N = EN (Gk,θN Xk,∗

N ), � ∈ Tk.

(9)

In (9), Xt,x,∗
k is given by⎧⎨

⎩
Xt,x,∗

k+1 = Ak,k,θk
Xt,x,∗

k + Bk,k,θk
ut,x,∗

k +
(
Ck,k,θk

Xt,x,∗
k + Dk,k,θk

ut,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt.

b) The convex condition

inf
uk∈l2F (k;Rm)

Ĵ(k, 0; uk) ≥ 0, k ∈ Tt (10)

is satisfied, where Ĵ(k, 0; uk) is given in (5).
Under any of the above conditions, ut,x,∗ given in (ii) is an open-loop equilibrium control.

Lemma 3.3 For t ∈ T1 = {1, 2, · · · , N − 1}, it holds that

Ek[I(θk=i)] = pθk−1i, k ∈ Tt, (11)

and

Ek[I(θk=i)wk] = 0, k ∈ Tt. (12)

Furthermore,
E0[I(θ0=i)] = P (θ0 = i) = νi,

and
E0[I(θ0=i)w0] = 0.

Proof Note that the processes θ and w are independent of each other. Concerned with (11)
and for A ∈ σ(w0, w1, · · · , wk−1) = F ′

k, we have

E
[
pθk−1iIA

]
= E

[
IA

] τ∑
j=1

P (θk−1 = j)pji = E
[
IA

]
P (θk = i) = E

[
I(θk=i)IA

]
.
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On the other hand, if A ∈ σ(θ0, θ1, · · · , θk−1) = F ′′
k , it holds that

E
[
I(θk=i)IA

]
= E

[
IAE

(
I(θk=i)|F ′′

k

)]
= E

[
pθk−1iIA

]
.

Noting Fk = F ′
k ∨ F ′′

k = σ(F ′
k ∪ F ′′

k ), we now prove that E
[
I(θk=i)IA

]
= E

[
pθk−1iIA

]
holds for

any A ∈ Fk. In fact, letting A ∈ F ′
k, B ∈ F ′′

k , we have

E
[
I(θk=i)IA∩B

]
= E

[
I(θk=i)IAIB

]
= E

[
I(θk=i)IB

]
E
[
IA

]
= E

[
pθk−1iIB

]
E
[
IA

]
= E

[
pθk−1iIA∩B

]
,

and

E
[
I(θk=i)IA\B

]
= E

[
I(θk=i)(IA − IA∩B)

]
= E

[
pθk−1iIA

] − E
[
pθk−1iIA∩B

]
= E

[
pθk−1iIA\B

]
.

Moreover, for Ai ∈ F ′
k or Ai ∈ F ′′

k , i = 1, 2, · · · , with property Ai ∩ Aj = ∅, i �= j, it holds that

E
[
I(θk=i)I∪iAi

]
=

∑
i

E
[
I(θk=i)IAi

]
=

∑
i

E
[
pθk−1iIAi

]
= E

[
pθk−1iI∪iAi

]
.

By the above derivation and the definition of σ-algebra, we must have

E
[
I(θk=i)IA

]
= E

[
pθk−1iIA

]
, A ∈ Fk,

which implies (11). Furthermore, we can similarly prove (12).
As F0 = {∅,Ω}, we have

E0[I(θ0=i)] = E[I(θ0=i)] = P (θ0 = i) = νi

and

E0[I(θ0=i)w0] = E[I(θ0=i)w0] = 0.

This completes the proof.

Remark 3.4 From Theorem 3.2 and Lemma 3.3, we have that for t ∈ T1, k ∈ Tt (8)
and (9) become to

0 = Ek

[
Rk,k,θk

ut,x,∗
k + BT

k,k,θk
Zk,∗

k+1 + DT
k,k,θk

Zk,∗
k+1wk

]
=

τ∑
i=1

pθk−1iRk,k,iu
t,x,∗
k +

τ∑
i=1

BT
k,k,iEk

[
I(θk=i)Z

k,∗
k+1

]
+

τ∑
i=1

DT
k,k,iEk

[
I(θk=i)Z

k,∗
k+1wk

]
(13)

and⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Xk,∗
�+1 = Ak,�,θ�

Xk,∗
� + Bk,�,θ�

ut,x,∗
� +

(
Ck,�,θ�

Xk,∗
� + Dk,�,θ�

ut,x,∗
�

)
w�,

Zk,∗
� =

τ∑
i=1

AT
k,�,iE�

[
I(θ�=i)Z

k,∗
�+1

]
+

τ∑
i=1

CT
k,�,iE�

[
I(θ�=i)Z

k,∗
�+1w�

]
+

τ∑
i=1

pθ�−1iQk,�,iX
k,∗
� ,

Xk,∗
k = Xt,x,∗

k , Zk,∗
N =

τ∑
i=1

pθN−1iGk,iX
k,∗
N , � ∈ Tk.

If k = t = 0, then (13) becomes

0 =
τ∑

i=1

νiR0,0,iu
0,x,∗
0 +

τ∑
i=1

BT
0,0,iE0

[
I(θ0=i)Z

0,∗
0+1

]
+

τ∑
i=1

DT
0,0,iE0

[
I(θ0=i)Z

0,∗
0+1w0

]
. (14)
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Lemma 3.5 If ut,x,∗ satisfies (8), then ut,x,∗
N−1 can be selected as

ut,x,∗
N−1 = −W †

N−1,θN−2
HN−1,θN−2X

t,x,∗
N−1 (15)

with property

(I − WN−1,θN−2W
†
N−1,θN−2

)HN−1,θN−2X
t,x,∗
N−1 = 0,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WN−1,θN−2 =
τ∑

i=1

pθN−2iRN−1,N−1,i +
τ∑

i=1

pθN−2iB
T
N−1,N−1,i

( τ∑
j=1

pijGN−1,j

)
BN−1,N−1,i

+
τ∑

i=1

pθN−2iD
T
N−1,N−1,i

( τ∑
j=1

pijGN−1,j

)
DN−1,N−1,i,

HN−1,θN−2 =
τ∑

i=1

pθN−2iB
T
N−1,N−1,i

( τ∑
j=1

pijGN−1,j

)
AN−1,N−1,i

+
τ∑

i=1

pθN−2iD
T
N−1,N−1,i

( τ∑
j=1

pijGN−1,j

)
CN−1,N−1,i.

Proof Note that

ZN−1,∗
N =

τ∑
j=1

pθN−1jGN−1,j

(
AN−1,N−1,θN−1X

N−1,∗
N−1 + BN−1,N−1,θN−1u

t,x,∗
N−1

)

+
τ∑

j=1

pθN−1jGN−1,j

(
CN−1,N−1,θN−1X

N−1,∗
N−1 + DN−1,N−1,θN−1u

t,x,∗
N−1

)
wN−1.

Then,

EN−1

[
I(θN−1=i)Z

N−1,∗
N

]
=

τ∑
j=1

EN−1

[
I(θN−1=i)pijGN−1,j

(
AN−1,N−1,iX

N−1,∗
N−1 + BN−1,N−1,iu

t,x,∗
N−1

)]

+
τ∑

j=1

EN−1

[
I(θN−1=i)pijGN−1,j

(
CN−1,N−1,iX

N−1,∗
N−1 + DN−1,N−1,iu

t,x,∗
N−1

)
wN−1

]

=
τ∑

j=1

pθN−2ipijGN−1,j

(
AN−1,N−1,iX

N−1,∗
N−1 + BN−1,N−1,iu

t,x,∗
N−1

)
. (16)

In the above, we have used the properties in Lemma 3.3. Furthermore, we have

EN−1

[
I(θN−1=i)Z

N−1,∗
N wN−1

]
=

τ∑
j=1

EN−1

[
I(θN−1=i)pijGN−1,j

(
AN−1,N−1,iX

N−1,∗
N−1 + BN−1,N−1,iu

t,x,∗
N−1

)
wN−1

]

+
τ∑

j=1

EN−1

[
I(θN−1=i)pijGN−1,j

(
CN−1,N−1,iX

N−1,∗
N−1 + DN−1,N−1,iu

t,x,∗
N−1

)
w2

N−1

]

=
τ∑

j=1

pθN−2ipijGN−1,j

(
CN−1,N−1,iX

N−1,∗
N−1 + DN−1,N−1,iu

t,x,∗
N−1

)
. (17)
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Hence, it holds that

0 =
τ∑

i=1

pθN−2iRN−1,N−1,iu
t,x,∗
N−1 +

τ∑
i=1

BT
N−1,N−1,iEN−1

[
I(θN−1=i)Z

N−1,∗
N

]

+
τ∑

i=1

DT
N−1,N−1,iEN−1

[
I(θN−1=i)Z

N−1,∗
N wN−1

]

=
τ∑

i=1

pθN−2iRN−1,N−1,iu
t,x,∗
N−1

+
τ∑

i=1

τ∑
j=1

pθN−2ipijB
T
N−1,N−1,iGN−1,j

(
AN−1,N−1,iX

N−1,∗
N−1 + BN−1,N−1,iu

t,x,∗
N−1

)

+
τ∑

i=1

τ∑
j=1

pθN−2ipijD
T
N−1,N−1,iGN−1,j

(
CN−1,N−1,iX

N−1,∗
N−1 + DN−1,N−1,iu

t,x,∗
N−1

)

=
{ τ∑

i=1

pθN−2iRN−1,N−1,i +
τ∑

i=1

τ∑
j=1

pθN−2ipijB
T
N−1,N−1,iGN−1,jBN−1,N−1,i

+
τ∑

i=1

τ∑
j=1

pθN−2ipijD
T
N−1,N−1,iGN−1,jDN−1,N−1,i

}
ut,x,∗

N−1

+
{ τ∑

i=1

τ∑
j=1

pθN−2ipijB
T
N−1,N−1,iGN−1,jAN−1,N−1,i

+
τ∑

i=1

τ∑
j=1

pθN−2ipijD
T
N−1,N−1,iGN−1,jCN−1,N−1,i

}
XN−1,∗

N−1 .

From Lemma 3.1 of [32], ut,x,∗
N−1 can be selected as (15).

Lemma 3.6 Let t ∈ T1, k ∈ Tt and assume that ut,x,∗
� in (8) and (9) has the form

ut,x,∗
� = Ψ�,θ�−1X

t,x,∗
� , � ∈ Tk+1 with Ψ�,θ�−1 a matric function of � and θ�−1. Then, the backward

state Zk,∗ of (9) is expressed as

Zk,∗
� = Pk,�,θ�−1X

k,∗
� + Tk,�,θ�−1X

t,x,∗
� , � ∈ Tk+1,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk,�,q =
τ∑

i=1

pqiQk,�,i +
τ∑

i=1

pqiA
T
k,�,iPk,�+1,iAk,�,i +

τ∑
i=1

pqiC
T
k,�,iPk,�+1,iCk,�,i,

Tk,�,q =
τ∑

i=1

pqiA
T
k,�,iTk,�+1,iA�,�,i +

τ∑
i=1

pqiC
T
k,�,iTk,�+1,iC�,�,i

+
τ∑

i=1

pqiA
T
k,�,i

(
Pk,�+1,iBk,�,i + Tk,�+1,iB�,�,i

)
Ψ�,q

+
τ∑

i=1

pqiC
T
k,�,i

(
Pk,�+1,iDk,�,i + Tk,�+1,iD�,�,i

)
Ψ�,q,

Pk,N,q = Gk,q, Tk,N,q = 0,

q = 1, 2, · · · , τ, � ∈ Tk+1.

(18)
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Proof Similarly to (16) and (17), we have

EN−1

[
I(θN−1=i)Z

k,∗
N

]
=

τ∑
j=1

pθN−2ipijGk,j

(
Ak,N−1,iX

k,∗
N−1 + Bk,N−1,iu

t,x,∗
N−1

)

and

EN−1

[
I(θN−1=i)Z

k,∗
N wN−1

]
=

τ∑
j=1

pθN−2ipijGk,j

(
Ck,N−1,iX

k,∗
N−1 + Dk,N−1,iu

t,x,∗
N−1

)
.

Hence,

Zk,∗
N−1 =

τ∑
i=1

AT
k,N−1,i

τ∑
j=1

pθN−2ipijGk,j

(
Ak,N−1,iX

k,∗
N−1 + Bk,N−1,iu

t,x,∗
N−1

)

+
τ∑

i=1

CT
k,N−1,i

τ∑
j=1

pθN−2ipijGk,j

(
Ck,N−1,iX

k,∗
N−1 + Dk,N−1,iu

t,x,∗
N−1

)

+
τ∑

i=1

pθN−2iQk,N−1,iX
k,∗
N−1

=
{ τ∑

i=1

pθN−2iQk,N−1,i +
τ∑

i=1

pθN−2iA
T
k,N−1,i

τ∑
j=1

pijGk,jAk,N−1,i

+
τ∑

i=1

pθN−2iC
T
k,N−1,i

τ∑
j=1

pijGk,jCk,N−1,i

)}
Xk,∗

N−1

+
{ τ∑

i=1

pθN−2iA
T
k,N−1,i

τ∑
j=1

pijGk,jBk,N−1,i

+
τ∑

i=1

pθN−2iC
T
k,N−1,i

τ∑
j=1

pijGk,jDk,N−1,i

)}
ΨN−1,θN−2X

t,x,∗
N−1

= Pk,N−1,θN−2X
k,∗
N−1 + Tk,N−1,θN−2X

t,x,∗
N−1. (19)

From (19), we obtain

EN−2

[
I(θN−2=i)Z

k,∗
N−1

]
= EN−2

[
I(θN−2=i)

(
Pk,N−1,θN−2X

k,∗
N−1 + Tk,N−1,θN−2X

t,x,∗
N−1

)]
= EN−2

[
Pk,N−1,iI(θN−2=i)

(
Ak,N−2,θN−2X

k,∗
N−2 + Bk,N−2,θN−2u

t,x,∗
N−2

)]
+EN−2

[
Tk,N−1,iI(θN−2=i)

(
AN−2,N−2,θN−2X

t,x,∗
N−2 + BN−2,N−2,θN−2u

t,x,∗
N−2

)]
= pθN−3iPk,N−1,iAk,N−2,iX

k,∗
N−2 + pθN−3iPk,N−1,iBk,N−2,iΨN−2,θN−3X

t,x,∗
N−2

+pθN−3iTk,N−1,i

(
AN−2,N−2,i + BN−2,N−2,iΨN−2,θN−3

)
Xt,x,∗

N−2
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and

EN−2

[
I(θN−2=i)Z

k,∗
N−1wN−2

]
= EN−2

[
I(θN−2=i)

(
Pk,N−1,θN−2X

k,∗
N−1 + Tk,N−1,θN−2X

t,x,∗
N−1

)
wN−2

]
= EN−2

[
Pk,N−1,iI(θN−2=i)

(
Ck,N−2,θN−2X

k,∗
N−2 + Dk,N−2,θN−2u

t,x,∗
N−2

)]
+EN−2

[
Tk,N−1,iI(θN−2=i)

(
CN−2,N−2,θN−2X

t,x,∗
N−2 + DN−2,N−2,θN−2u

t,x,∗
N−2

)]
= pθN−3iPk,N−1,iCk,N−2,iX

k,∗
N−2 + pθN−3iPk,N−1,iDk,N−2,iΨN−2,θN−3X

t,x,∗
N−2

+pθN−3iTk,N−1,i

(
CN−2,N−2,i + DN−2,N−2,iΨN−2,θN−3

)
Xt,x,∗

N−2.

Therefore,

Zk,∗
N−2 =

τ∑
i=1

AT
k,N−2,iE�

[
I(θN−2=i)Z

k,∗
N−1

]
+

τ∑
i=1

CT
k,N−2,iEN−2

[
I(θN−2=i)Z

k,∗
N−1wN−2

]

+
τ∑

i=1

pθN−3iQk,N−2,iX
k,∗
N−2

=
{ τ∑

i=1

pθN−3iQk,N−2,i +
τ∑

i=1

pθN−3iA
T
k,N−2,iPk,N−1,iAk,N−2,i

+
τ∑

i=1

pθN−3iC
T
k,N−2,iPk,N−1,iCk,N−2,i

}
Xk,∗

N−2

+
{ τ∑

i=1

pθN−3iA
T
k,N−2,iTk,N−1,iAN−2,N−2,i +

τ∑
i=1

pθN−3iC
T
k,N−2,iTk,N−1,iCN−2,N−2,i

+
τ∑

i=1

pθN−3iA
T
k,N−2,i

(
Pk,N−1,iBk,N−2,i + Tk,N−1,iBN−2,N−2,i

)
ΨN−2,θN−3

+
τ∑

i=1

pθN−3iC
T
k,N−2,i

(
Pk,N−1,iDk,N−2,i + Tk,N−1,iDN−2,N−2,i

)
ΨN−2,θN−3

}
Xt,x,∗

N−2

= Pk,N−2,θN−3X
k,∗
N−2 + Tk,N−2,θN−3X

t,x,∗
N−2.

By deduction, we can achieve the conclusion.

Theorem 3.7 The following statements are equivalent.
(i) There exists a ut,x,∗ ∈ l2F(Tt; Rm) such that the stationary condition (8) is satisfied.
(ii) Either of the following two cases holds.
a) For t ∈ T1,

(I − Wk,θk−1W
†
k,θk−1

)Hk,θk−1X
t,x,∗
k = 0, k ∈ Tt (20)

is satisfied, where Xt,x,∗ is⎧⎨
⎩

Xt,x,∗
k+1 = Ak,k,θk

Xt,x,∗
k + Bk,k,θk

ut,x,∗
k +

(
Ck,k,θk

Xt,x,∗
k + Dk,k,θk

ut,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt
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with

ut,x,∗
k = −W †

k,θk−1
Hk,θk−1X

t,x,∗
k , k ∈ Tt.

In the above, (Wk,θk−1 , Hk,θk−1) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wk,θk−1 =
τ∑

i=1

pθk−1i

[
Rk,k,i + BT

k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Bk,k,i

+ DT
k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Dk,k,i

]
,

Hk,θk−1 =
τ∑

i=1

pθk−1i

[
BT

k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Ak,k,i

+ DT
k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Ck,k,i

]
,

(21)

and (Pk,k+1,i, Tk,k+1,i), i = 1, 2, · · · , τ, k ∈ Tt, are computed via

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk,�,q =
τ∑

i=1

pqiQk,�,i +
τ∑

i=1

pqiA
T
k,�,iPk,�+1,iAk,�,i

+
τ∑

i=1

pqiC
T
k,�,iPk,�+1,iCk,�,i,

Tk,�,q =
τ∑

i=1

pqiA
T
k,�,iTk,�+1,iA�,�,i +

τ∑
i=1

pqiC
T
k,�,iTk,�+1,iC�,�,i

−
τ∑

i=1

pqiA
T
k,�,i

(
Pk,�+1,iBk,�,i + Tk,�+1,iB�,�,i

)
W †

�,qH�,q

−
τ∑

i=1

pqiC
T
k,�,i

(
Pk,�+1,iDk,�,i + Tk,�+1,iD�,�,i

)
W †

�,qH�,q,

Pk,N,q = Gk,q, Tk,N,q = 0,

q = 1, 2, · · · , τ, � ∈ Tk+1.

(22)

b) For t = 0,

(I − Wk,θk−1W
†
k,θk−1

)Hk,θk−1X
0,x,∗
k = 0, k ∈ T1, (23)

and

(I − W0W
†
0 )H0x = 0 (24)

are satisfied. Here, (Wk,θk−1 , Hk,θk−1) is given in (21) (with k ∈ T1), and (W0, H0) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W0 =
τ∑

i=1

νi

[
R0,0,i + BT

0,0,i

(
P0,1,i + T0,1,i

)
B0,0,i + DT

0,0,i

(
P0,1,i + T0,1,i

)
D0,0,i

]
,

H0 =
τ∑

i=1

νi

[
BT

0,0,i

(
P0,1,i + T0,1,i

)
A0,0,i + DT

0,0,i

(
P0,1,i + T0,1,i

)
C0,0,i

]
.
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with (P0,1,i, T0,1,i), i = 1, 2, · · · , τ , computed via⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0,�,q =
τ∑

i=1

pqiQ0,�,i +
τ∑

i=1

pqiA
T
0,�,iP0,�+1,iA0,�,i

+
τ∑

i=1

pqiC
T
0,�,iP0,�+1,iC0,�,i,

T0,�,q =
τ∑

i=1

pqiA
T
0,�,iT0,�+1,iA�,�,i +

τ∑
i=1

pqiC
T
0,�,iT0,�+1,iC�,�,i

−
τ∑

i=1

pqiA
T
0,�,i

(
P0,�+1,iB0,�,i + T0,�+1,iB�,�,i

)
W †

�,qH�,q

−
τ∑

i=1

pqiC
T
0,�,i

(
P0,�+1,iD0,�,i + T0,�+1,iD�,�,i

)
W †

�,qH�,q,

P0,N,q = G0,q, T0,N,q = 0,

q = 1, 2, · · · , τ, � ∈ T1.

Further, X0,x,∗
k in (23) is computed via⎧⎨

⎩
X0,x,∗

k+1 = Ak,k,θk
X0,x,∗

k + Bk,k,θk
u0,x,∗

k +
(
Ck,k,θk

X0,x,∗
k + Dk,k,θk

u0,x,∗
k

)
wk,

X0,x,∗
0 = x, k ∈ T

with

u0,x,∗
k =

⎧⎨
⎩

−W †
k,θk−1

Hk,θk−1X
t,x,∗
k , k ∈ T1,

−W †
0 H0x, k = 0.

Proof (i)⇒(ii). Firstly consider the case t ∈ T1. From Lemma 3.5, letting ΨN−1,θN−2 =
−W †

N−1,θN−2
HN−1,θN−2 and substituting it into (18), we have PN−2,N−1,θN−2, TN−2,N−1,θN−2

and
ZN−2,∗

N−1 = PN−2,N−1,θN−2X
N−2,∗
N−1 + TN−2,N−1,θN−2X

t,x,∗
N−1.

Similarly to (16) and (17), it holds that

EN−2

[
I(θN−2=i)Z

N−2,∗
N−1

]
= PN−2,N−1,iEN−2

[
I(θN−2=i)X

N−2,∗
N−1

]
+ TN−2,N−1,iEN−2

[
I(θN−2=i)X

t,x,∗
N−1

]
= pθN−3i

(
PN−2,N−1,i + TN−2,N−1,i

)
AN−2,N−2,iX

t,x,∗
N−2

+pθN−3i

(
PN−2,N−1,i + TN−2,N−1,i

)
BN−2,N−2,iu

t,x,∗
N−2

and

EN−2

[
I(θN−2=i)Z

N−2,∗
N−1 wN−2

]
= pθN−3i

(
PN−2,N−1,i + TN−2,N−1,i

)
CN−2,N−2,iX

t,x,∗
N−2

+pθN−3i

(
PN−2,N−1,i + TN−2,N−1,i

)
DN−2,N−2,iu

t,x,∗
N−2.
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Therefore, we have

0 =
τ∑

i=1

pθN−3iRN−2,N−2,iu
t,x,∗
N−2 +

τ∑
i=1

BT
N−2,N−2,iEN−2

[
I(θN−2=i)Z

N−2,∗
N−1

]

+
τ∑

i=1

DT
N−2,N−2,iEN−2

[
I(θN−2=i)Z

N−2,∗
N−1 wN−2

]
= WN−2,θN−3u

t,x,∗
N−2 + HN−2,θN−3X

t,x,∗
N−2, (25)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WN−2,θN−3 =
τ∑

i=1

pθN−3i

[
RN−2,N−2,i + BT

N−2,N−2,i

(
PN−2,N−1,i + TN−2,N−1,i

)
BN−2,N−2,i

+DT
N−2,N−2,i

(
PN−2,N−1,i + TN−2,N−1,i

)
DN−2,N−2,i

]
,

HN−2,θN−3 =
τ∑

i=1

pθN−3i

[
BT

N−2,N−2,i

(
PN−2,N−1,i + TN−2,N−1,i

)
AN−2,N−2,i

+DT
N−2,N−2,i

(
PN−2,N−1,i + TN−2,N−1,i

)
CN−2,N−2,i

]
.

From Lemma 3.1 of [32] and (25), ut,x,∗
N−2 can be selected as

ut,x,∗
N−2 = −W †

N−2,θN−3
HN−2,θN−3X

t,x,∗
N−2

and

(I − WN−2,θN−3W
†
N−2,θN−3

)HN−2,θN−3X
t,x,∗
N−2 = 0.

By deduction, we can achieve the conclusion.
Consider the case t = 0. Similarly to the case t ∈ T1, we can prove the results for k ∈ T1,

and now we pay attention to the result for k = 0. Note that

Z0,∗
� = P0,�,θ�−1X

0,∗
� + T0,�,θ�−1X

0,x,∗
� , � ∈ T1,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0,�,q =
τ∑

i=1

pqiQ0,�,i +
τ∑

i=1

pqiA
T
0,�,iP0,�+1,iA0,�,i +

τ∑
i=1

pqiC
T
0,�,iP0,�+1,iC0,�,i,

T0,�,q =
τ∑

i=1

pqiA
T
0,�,iT0,�+1,iA�,�,i +

τ∑
i=1

pqiC
T
0,�,iT0,�+1,iC�,�,i

+
τ∑

i=1

pqiA
T
0,�,i

(
P0,�+1,iB0,�,i + T0,�+1,iB�,�,i

)
Ψ�,q

+
τ∑

i=1

pqiC
T
0,�,i

(
P0,�+1,iD0,�,i + T0,�+1,iD�,�,i

)
Ψ�,q,

P0,N,q = G0,q, T0,N,q = 0,

q = 1, 2, · · · , τ, � ∈ T1.
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Hence,

E0

[
I(θ0=i)Z

0,∗
1

]
= νi

(
P0,1,i + T0,1,i

)(
A0,0,ix + B0,0,iu

0,x,∗
0

)
and

E0

[
I(θ0=i)Z

0,∗
1 w0

]
= νi

(
P0,1,i + T0,1,i

)(
C0,0,ix + D0,0,iu

0,x,∗
0

)
.

Therefore, (14) becomes

0 = W0u
0,x,∗
0 + H0x, (26)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W0 =
τ∑

i=1

νi

[
R0,0,i + BT

0,0,i

(
P0,1,i + T0,1,i

)
B0,0,i + DT

0,0,i

(
P0,1,i + T0,1,i

)
D0,0,i

]
,

H0 =
τ∑

i=1

νi

[
BT

0,0,i

(
P0,1,i + T0,1,i

)
A0,0,i + DT

0,0,i

(
P0,1,i + T0,1,i

)
C0,0,i

]
.

From Lemma 3.1 of [32] and (26), ut,x,∗
0 can be selected as

u0,x,∗
0 = −W †

0 H0x

and
(I − W0W

†
0 )H0x = 0.

(ii)⇒(i). By reversing the proof of (i)⇒(ii) and Lemma 3.1 of [32], we can achieve the
conclusion.

Lemma 3.8 The following statements are equivalent.
(i) The convex condition (10) is satisfied.
(ii) Either of the following two cases holds.
a) For t ∈ T1,

τ∑
i=1

pθk−1i

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0, k ∈ Tt, a.s. (27)

is satisfied.
b) For t = 0,

τ∑
i=1

pθk−1i

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0, k ∈ T1, a.s. (28)

and
τ∑

i=1

νi

(
R0,0,i + BT

0,0,iP0,1,iB0,0,i + DT
0,0,iP0,1,iD0,0,i

) ≥ 0 (29)

are satisfied.
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Furthermore,
τ∑

i=1

pji

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0, j = 1, 2, · · · , τ, k ∈ Tt (30)

implies (27). If further the Markov chain θ is irreducible, then (30) and (27) are equivalent.

Proof From (5) and the {Pk,�,q} of (22), we have

Ĵ(k, 0; uk)

=
N−1∑
�=k

E

{
(Y k,uk

� )TQk,�,θ�
Y k,uk

� + (Y k,uk

�+1 )TPk,�+1,θ�
Y k,uk

�+1 − (Y k,uk

� )TPk,�,θ�−1Y
k,uk

�

}

+E
[
uT

k Rk,�,θk
uk

]
=

N−1∑
�=k

E

{
(Y k,uk

� )T
[
Qk,�,θ�

+ AT
k,�,θ�

Pk,�+1,θ�
Ak,�,θ�

+ CT
k,�,θ�

Pk,�+1,θ�
Ck,�,θ�

− Pk,�,θ�−1

]
Y k,uk

�

}

+E
[
uT

k

(
Rk,k,θk

+ BT
k,k,θk

Pk,k+1,θk
Bk,k,θk

+ DT
k,k,θk

Pk,k+1,θk
Dk,k,θk

)
uk

]
≥ 0.

Hence, the convexity condition (10) is satisfied if and only if

Ek

(
Rk,k,θk

+ BT
k,k,θk

Pk,k+1,θk
Bk,k,θk

+ DT
k,k,θk

Pk,k+1,θk
Dk,k,θk

) ≥ 0, k ∈ Tt, a.s.

Note that for t ∈ T1 and k ∈ Tt

Ek

(
Rk,k,θk

+ BT
k,k,θk

Pk,k+1,θk
Bk,k,θk

+ DT
k,k,θk

Pk,k+1,θk
Dk,k,θk

)
=

τ∑
i=1

pθk−1i

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

)
and

E0

(
R0,0,θ0 + BT

0,0,θ0
P0,1,θ0B0,0,θ0 + DT

0,0,θ0
P0,1,θ0D0,0,θ0

)
=

τ∑
i=1

νi

(
R0,0,i + BT

0,0,iP0,1,iB0,0,i + DT
0,0,iP0,1,iD0,0,i

)
.

We then have the equivalence between (i) and (ii).
If the Markov chain θ is irreducible, then P (θk = j) > 0 for k ∈ T, j = 1, 2, · · · , τ . Hence,

(27) is equivalent to (30).
By the above preparations, we have the following equivalent characterization on the existence

of open-loop equilibrium control of Problem (LQ).

Theorem 3.9 For the initial pair (t, x), the following statements are equivalent.
(i) There exists an open-loop equilibrium control of Problem (LQ) for the initial pair (t, x).
(ii) Either of the following two cases holds.
a) For t ∈ T1, the conditions (20) and (27) are satisfied.
b) For t = 0, the conditions (23), (24), (28) and (29) are satisfied.
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So far, we are curious about the case that the initial pair (t, x) rolls out over the product
space T×R

n. In this case, k ∈ Tt in (27) should be slightly changed as k ∈ T to characterize the
convexity condition. Concerned with the stationary conditions, we can get more beyond (20).
For details, see the following theorem.

Theorem 3.10 The following statements are equivalent.
(i) For any initial pair (t, x) ∈ T × R

n, there exists an open-loop equilibrium control of
Problem (LQ) for the initial pair (t, x).

(ii) The set of difference equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk,�,q =
τ∑

i=1

pqiQk,�,i +
τ∑

i=1

pqiA
T
k,�,iPk,�+1,iAk,�,i

+
∑τ

i=1 pqiC
T
k,�,iPk,�+1,iCk,�,i,

Tk,�,q =
τ∑

i=1

pqiA
T
k,�,iTk,�+1,iA�,�,i +

τ∑
i=1

pqiC
T
k,�,iTk,�+1,iC�,�,i

−
τ∑

i=1

pqiA
T
k,�,i

(
Pk,�+1,iBk,�,i + Tk,�+1,iB�,�,i

)
W †

�,qH�,q

−
τ∑

i=1

pqiC
T
k,�,i

(
Pk,�+1,iDk,�,i + Tk,�+1,iD�,�,i

)
W †

�,qH�,q,

Pk,N,q = Gk,q, Tk,N,q = 0,

q = 1, 2, · · · , τ, � ∈ Tk+1,
τ∑

i=1

pθk−1i

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0, k ∈ T1,

Wk,θk−1W
†
k,θk−1

Hk,θk−1 = Hk,θk−1 , k ∈ T1,
τ∑

i=1

νi

(
R0,0,i + BT

0,0,iP0,1,iB0,0,i + DT
0,0,iP0,1,iD0,0,i

) ≥ 0,

W0W
†
0 H0 = H0

(31)

is solvable in the sense of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ∑
i=1

pθk−1i

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0, k ∈ T1,

Wk,θk−1W
†
k,θk−1

Hk,θk−1 = Hk,θk−1 , k ∈ T1,
τ∑

i=1

νi

(
R0,0,i + BT

0,0,iP0,1,iB0,0,i + DT
0,0,iP0,1,iD0,0,i

) ≥ 0,

W0W
†
0 H0 = H0,
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wk,θk−1 =
τ∑

i=1

pθk−1i

[
Rk,k,i + BT

k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Bk,k,i

+ DT
k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Dk,k,i

]
,

Hk,θk−1 =
τ∑

i=1

pθk−1i

[
BT

k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Ak,k,i

+ DT
k,k,i

(
Pk,k+1,i + Tk,k+1,i

)
Ck,k,i

]
,

k ∈ T1,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W0 =
τ∑

i=1

νi

[
R0,0,i + BT

0,0,i

(
P0,1,i + T0,1,i

)
B0,0,i + DT

0,0,i

(
P0,1,i + T0,1,i

)
D0,0,i

]
,

H0 =
τ∑

i=1

νi

[
BT

0,0,i

(
P0,1,i + T0,1,i

)
A0,0,i + DT

0,0,i

(
P0,1,i + T0,1,i

)
C0,0,i

]
.

Under any of above conditions,

ut,x,∗
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎨
⎩−W †

k,θk−1
Hk,θk−1X

t,x,∗
k , k ∈ T1,

−W †
0 H0x, k = 0,

t = 0,

−W †
k,θk−1

Hk,θk−1X
t,x,∗
k , t ∈ T1, k ∈ Tt

is an open-loop equilibrium control of Problem (LQ) for the initial pair (t, x), and the corre-
sponding open-loop equilibrium state is⎧⎨

⎩
Xt,x,∗

k+1 = Ak,k,θk
Xt,x,∗

k + Bk,k,θk
ut,x,∗

k +
(
Ck,k,θk

Xt,x,∗
k + Dk,k,θk

ut,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt.

Proof ii)⇒i). This follows from Theorem 3.7 and Lemma 3.8.
i)⇒ii). Note (20). Letting k = t and taking different x′s, we have Wk,θk−1W

†
k,θk−1

Hk,θk−1 =
Hk,θk−1 , k ∈ T. As for any (t, x) with t ∈ T and x ∈ l2F (t; Rn) Problem (LQ)tx admits an
open-loop equilibrium control, we must have the solvability of (31).

Remark 3.11 If the Markov chain θ is irreducible, then P (θk = j) > 0 for k ∈ T, j =
1, 2, · · · , τ . In this case, if⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ∑
i=1

pji

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0,

Wk,jW
†
k,jHk,j = Hk,j , k ∈ T1,

j = 1, 2, · · · , τ
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is satisfied, then⎧⎪⎨
⎪⎩

τ∑
i=1

pθk−1i

(
Rk,k,i + BT

k,k,iPk,k+1,iBk,k,i + DT
k,k,iPk,k+1,iDk,k,i

) ≥ 0,

Wk,θk−1W
†
k,θk−1

Hk,θk−1 = Hk,θk−1 , k ∈ T1

will hold.

4 An Example

Consider an example of Problem (LQ) with the system equation⎧⎨
⎩Xk+1 =

(
Ak,θk

Xk + Bk,θk
uk

)
+

(
Ck,θk

Xt
k + Dk,θk

uk

)
wk,

Xt = x, k ∈ Tt = {t, · · · , 2}, t ∈ T = {0, 1, 2},

and the cost functional

J(t, x; u) =
2∑

k=t

E
[
(Xk)TQt,k,θk

Xk + uT
k Rt,k,θk

uk

]
+ E

[
XT

3 Gt,θ3X3

]
,

where

A0,θ0|θ0=1 = 1.1, A0,θ0|θ0=2 = 0.51, A1,θ1|θ1=1 = −1.41, A1,θ1|θ1=2 = −1.5,

A2,θ2|θ2=1 = 2.1, A2,θ2|θ2=2 = −1.55, B0,θ0|θ0=1 = −1.5, B0,θ0|θ0=2 = 1.35,

B1,θ1|θ1=1 = −1.5, B1,θ1|θ1=2 = −1.85, B2,θ2|θ2=1 = 0, B2,θ2|θ2=2 = 2.55,

C0,θ0|θ0=1 = 2.14, C0,θ0|θ0=2 = −1.31, C1,θ1|θ1=1 = −2.431, C1,θ1|θ1=2 = 2.38,

C2,θ2|θ2=1 = −2.341, C2,θ2|θ2=2 = 2.445, D0,θ0|θ0=1 = 1.455, D0,θ0|θ0=2 = −2.345,

D1,θ1|θ1=1 = 2.533, D1,θ1|θ1=2 = 2.45, D2,θ2|θ2=1 = 1.5, D2,θ2|θ2=2 = 0,

Q0,0,θ0|θ0=1 = Q0,0,θ0|θ0=2 = 2, Q0,1,θ1|θ1=1 = Q0,1,θ1|θ1=2 = 0,

Q0,2,θ2|θ2=1 = Q0,2,θ2|θ2=2 = 1, Q1,1,θ1|θ1=1 = Q1,1,θ1|θ1=2 = 1.5,

Q1,2,θ2|θ2=1 = Q1,2,θ2|θ2=2 = 1.75, Q2,2,θ2|θ2=1 = Q2,2,θ2|θ2=2 = 1,

R0,0,θ0|θ0=1 = R0,0,θ0|θ0=2 = 1, R0,1,θ1|θ1=1 = R0,1,θ1|θ1=2 = 2.5,

R0,2,θ2|θ2=1 = R0,2,θ2|θ2=2 = 2, R1,1,θ1|θ1=1 = R1,1,θ1|θ1=2 = 2,

R1,2,θ2|θ2=1 = R1,2,θ2|θ2=2 = 3, R2,2,θ2|θ2=1 = R2,2,θ2|θ2=2 = 3.45,

G0,θ3|θ3=1 = 1, G0,θ3|θ3=2 = 1.5, G1,θ3|θ3=1 = 2, G1,θ3|θ3=2 = 2.5,

G2,θ3|θ3=1 = 0.5, G2,θ3|θ3=2 = 1.75.

Here, Markov chain θ takes values in M = {1, 2} with the transition probability matrix

Λ =

⎛
⎝ 1

4
3
4

1
2

1
2

⎞
⎠ ,
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and the initial distribution of θ is ν = (1
2 , 1

2 ).
Solution By some calculations, we have

2∑
i=1

p1i

(
R2,2,i + BT

2,iP2,3,iB2,i + DT
2,iP2,3,iD2,i

)
= 12.2658 > 0,

2∑
i=1

p2i

(
R2,2,i + BT

2,iP2,3,iB2,i + DT
2,iP2,3,iD2,i

)
= 9.7022 > 0,

2∑
i=1

p1i

(
R1,1,i + BT

1,iP1,2,iB1,i + DT
1,iP1,2,iD1,i

)
= 206.8808 > 0,

2∑
i=1

p2i

(
R1,1,i + BT

1,iP1,2,iB1,i + DT
1,iP1,2,iD1,i

)
= 203.3189 > 0,

2∑
i=1

νi

(
R0,0,i + BT

0,iP0,1,iB0,i + DT
0,iP0,1,iD0,i

)
= 578.8061 > 0,

W2,1 = 12.2658 �= 0, W2,2 = 9.7022 �= 0, W1,1 = 170.9644 �= 0,

W1,2 = 167.4800 �= 0, W0 = 467.8447 �= 0.

According to this and Remark 3.11, we have that the corresponding (31) is solvable. Therefore,
for any (t, x) ∈ {0, 1, 2} × R, the considered LQ problem admits an open-loop equilibrium
control. For (0, x), the control

u0,x,∗ =

⎧⎨
⎩−W †

k,θk−1
Hk,θk−1X

0,x,∗
k , k ∈ {1, 2},

−W †
0 H0x, k = 0,

is an open-loop equilibrium control, where

−W †
0 H0 = −0.4537, − W †

1,1H1,1 = −0.5826, − W †
1,2H1,2 = −0.2493,

−W †
2,1H2,1 = 0.4587, − W †

2,2H2,2 = 0.4469,

and X0,x,∗ is computed via⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X0,x,∗
k+1 =

(
Ak,θk

− Bk,θk
W †

k,θk−1
Hk,θk−1

)
X0,x,∗

k

+
(
Ck,θk

Dk,θk
W †

k,θk−1
Hk,θk−1

)
X0,x,∗

k wk, k = 1, 2,

X0,x,∗
1 =

(
A0,θ0 − B0,θ0W

†
0 H0

)
X0,x,∗

0

+
(
C0,θ0 − D0,θ0W

†
0 H0

)
X0,x,∗

0 w0,

X0,x,∗
0 = x.

5 Conclusion

In this paper, we investigated the open-loop equilibrium control for a time-inconsistent
stochastic LQ problem with regime switching. Necessary and sufficient conditions are presented
to characterize the existence of open-loop equilibrium control via the Markov-chain-modulated
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FBSΔE and generalized Riccati-like equations. For future researches, we would like to extend
the methodology developed in this paper to other types of time inconsistency.
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